Add to Favorites  
Home  
News
LED Industry News
LED Manufacturer
Knowledge
Company News
Contact Us
TEL: +86 510 82123195
Mobile: +86 18168862789
FAX: +86 510 84602998
Email: info@kingluxlens.com
MSN: kingluxlens@hotmail.com
Skype: kingluxlens
Q Q: 2852820700,2852820701,2852820699
  Knowledge Current Location: Home > News > Knowledge   
LED plant lighting application
Light quality affects many physiological processes of plants, especially in photosynthesis and plant morphogenesis. The rational use of specific light waves is beneficial to improve the nutritional quality of vegetables.


It is generally believed that red light is conducive to the accumulation of carbohydrates, promotes the synthesis of soluble sugars, but is not conducive to the accumulation of soluble proteins; and blue light can promote protein formation. Red blue light helps to reduce the amount of nitrate absorbed. The soluble sugar content of various varieties of lettuce was higher under blue or red-blue light treatment. Compared with white light, red and blue light treatment significantly reduced the amount of nitrate in the lettuce. Under the same light intensity and illumination time, the red, blue and white mixed LED illumination can reduce the hydroponic nitrate content compared with the red blue light. Under the white light condition, the treatment of supplementing blue or green light reduces the nitric acid in the lettuce. Salt content.


Different light qualities have different effects on the formation of secondary metabolites in plant organs. Red light, blue light, red and blue mixed light can promote the degradation rate of chlorophyll in colored sweet pepper fruits and increase the synthesis rate of carotenoids and anthocyanins, and slow down the synthesis speed of flavonoids. Blue light can induce the accumulation of flavonoids and anthocyanins, and increasing the proportion of blue light can promote the formation of lycopene and flavonoids in tomato fruit. Adding UV-B and blue light to lettuce at night can increase the content of quercetin in lettuce. The content of anthocyanins and carotenoids in leaves supplemented with ultraviolet light and blue light was significantly increased; blue light increased the content of chlorophyll in lettuce, and the treatment of blue light at night, the total phenol and flavonoid content of leaves and antioxidant capacity were the highest; Compared with red light treatment, the content of anthocyanin in the upper part of lettuce was significantly increased, and the content of anthocyanin in the upper part of lettuce was the lowest under blue light treatment. Red light: white light: The blue light increased the total anthocyanin content of Baisu under 8:1:1 treatment. The total phenolic content of red leaf, purple leaf and green leaf lettuce was the highest under red or blue combined light or white light, the content of flavonoids and anthocyanin was the lowest under red light, and the anthocyanin content was the largest under the combination of red and blue light. Under the condition of 100% blue light, the fresh weight of the raw menu can be significantly increased, and the vitamin C content is also 2.25 times of the control. The total phenolic content of basil under the light quality treatment of blue light 20%, green light 39%, red light 35%, far red light 5% and 1% ultraviolet light is significantly higher than other treatments; Significantly increase the chlorophyll and carotenoid content of lettuce.


A large number of studies have shown that the combination of red and blue light has a significantly higher effect on the nutritional quality of plants than monochromatic light. Compared with white light, the vitamin C content of lettuce and Komatsu treated under blue or red-blue light is significantly increased. Under controlled environmental conditions, red and blue light is the most suitable light treatment for increasing the content of perillaldehyde, limonene and anthocyanin in perilla. Compared with the absence of blue light, a certain proportion of blue light (59%, 47% and 35%) was added to red light, and the chlorophyll content, total phenolic content, total flavonoid content and antioxidant capacity of green leaf lettuce and red leaf lettuce were found. Significantly improved. Compared with white light treatment, red and blue composite light can promote the increase of soluble protein content of celery, and reduce the content of nitrate. The content of total phenol, red pigment, yellow pigment and total antioxidant capacity in soluble sugar and eggplant skin of eggplant are also improved. . Compared with white light, red and blue combined light (1:1) increased the soluble sugar and lycopene content of the fruit; red and blue combined light (3:1) significantly increased the free amino acid and soluble protein content. Compared with other treatments, 70% red light + 30% blue light treatment can significantly increase the fresh weight of the menu and the chlorophyll and carotenoid content.


Green light and yellow orange light, although there are not many reports and studies at present, it also has important physiological effects on vegetables. Different light qualities have different effects on photosynthetic pigments of lettuce, and the content of β-carotene is the highest under green light. Supplementation of orange light increased the total phenolic content of the oily wheat, and supplemented with green light increased its alpha-carotene and anthocyanin content. Supplementing green light can promote the accumulation of soluble sugar in lettuce and also reduce nitrate content.


Ultraviolet and infrared light also have a certain impact on the quality of vegetables. After adding UV-C (254nm) to pea seedlings, the vitamin C content did not change. After supplementing UV-A (365nm), the vitamin C content of pea seedlings was significantly reduced, but the content of flavonoids was increased. The UV-B-free source significantly reduced the amount of oxalic acid in the beet compared to the control. Supplementing UV light can increase the content of phenolic substances and α-carotene in rapeseed. The UV-B spinach with 6kJ·m-2 per day had the lowest ascorbic acid content, and the spinach with 4kJ·m-2 UV-B irradiation had higher anthocyanin content. After treatment with UV-A and UV-B, the content of anthocyanin was significantly increased in purple cabbage and green cabbage, and UV-B treatment was more effective than UV-A treatment in increasing anthocyanin content. The increase in the expression level of downstream structural genes in anthocyanin biosynthesis has a very close relationship. UV-A irradiation significantly increased the antioxidant enzyme activity of radish sprouts, and increased the ascorbic acid content in radish sprouts by increasing the expression of L-galactose pathway-related genes and GLDH enzyme activity. The anthocyanins, carotenoids and chlorophyll content of lettuce leaves supplemented by far infrared light treatment were significantly reduced. The addition of far-infrared light promotes the accumulation of vitamin C in lettuce and reduces biomass and pigment content. The addition of far-infrared light on the basis of red and blue light can significantly increase the content of total phenol, chlorogenic acid and caffeic acid in lettuce, and the antioxidant capacity is also significantly increased.


For sprouts, it is generally believed that blue-violet light can make seedlings robust and also promote the accumulation and synthesis of antioxidant substances. Supplementation of UV-A and blue light can increase the content of anthocyanins in lettuce sprouts, increase the content of carotenoids by blue light, increase the total phenolic content by adding red light, and supplement the far red light to make anthocyanins in the lettuce sprouts. Both carotene and total phenols are reduced. Red and blue light treatment can increase the content of vitamin C in pea seedling leaves, and the content of carotenoids in pea seedlings is higher under white light and red and blue light treatment, and the anthocyanin content is the highest under white light treatment. UV-B irradiation for 24 hours promoted the accumulation of kaempferol and quercetin in broccoli sprouts, and UV-B induced the synthesis of glucosinolate (GS). UV-B and blue light can increase the total phenolic content in radish sprouts and improve the antioxidant capacity of sprouts. The chlorophyll a and chlorophyll b and total chlorophyll content of radish sprouts under red LED irradiation were the highest; blue LED could promote the accumulation of vitamin C in radish sprouts. Compared with white light, blue light and red and blue mixed light treatment can increase the content of amino acids, vitamin C and total flavonoids in the seedlings of the camphor, while reducing the content of nitrate, crude fiber and tannin. Blue light treatment is beneficial to increase the protein content and carotenoid content of pea sprouts, promote the synthesis of vitamin C, and reduce the crude fiber content. Red light treatment can chlorophyll, soluble sugar and crude fiber content, but inhibit vitamin C synthesis.


As a large country with the largest horticultural area in the world, China urgently needs to develop LED lamps and LED lighting automatic control systems and LED control that meet the needs of facility horticulture (including tissue culture, factory seedling, greenhouse shed light, full artificial light production, etc.). Device. With the development of LED technology and the decline of production cost year by year, especially with the continuous development of plant photobiology research, the theoretical basis of plant lighting application technology is continuously strengthened and improved, and various technologies and products related to LED plant lighting must It will be widely used in the production practice of facility gardening.
Copyright 2006-2018 Professional LED Optical Glass Lens Manufacturers-Wuxi Kinglux Glass Lens Co.,Limited   All Rights Reserved.